11476 measured reflections

 $R_{\rm int} = 0.023$

2933 independent reflections

2402 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-{2-[N-(4-Methylphenyl)oxamoyl]phenyl}propanamide

Humayun Pervez,^a Maqbool Ahmad,^a Muhammad Yaqub,^a M. Nawaz Tahir^{b*} and Naveeda Saira^a

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 13 June 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study: T = 296 K: mean $\sigma(C-C) = 0.003$ Å: R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 14.0.

The title compound, $C_{18}H_{18}N_2O_3$, is the product of the heterocyclic ring cleavage at position 2 of 1-propionylisatin. Two centrosymmetric cyclic motifs, viz. $R_2^2(14)$ and $R_2^2(18)$, are formed by N-H···O hydrogen bonds with the propanamide and aminophenyl units, respectively, as the N-H donors. These motifs combine into two $C_2^2(8)$ chain motifs parallel to the b axis. The chain structure is stabilized by $C-H\cdots\pi$ interactions between the benzene rings, where C-H is from the phenyl ring of the cleaved part of 1-propionylisatin.

Related literature

For related structures, see: Hohne & Seidel (1979); Boryczka et al. (1998); Zukerman-Schpector et al. (1994). For synthetic background, see: Pervez et al. (2009, 2010a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

C18H18N2O3 $M_r = 310.34$ Triclinic, $P\overline{1}$ a = 9.2048 (4) Å b = 9.7717 (3) Å c = 10.4404 (4) Å $\alpha = 72.962 (2)^{\circ}$ $\beta = 72.920 \ (1)^{\circ}$

$\gamma = 69.285 \ (2)^{\circ}$
$V = 820.63 (6) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 296 K
$0.32 \times 0.24 \times 0.22$ mm

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.942, \ T_{\rm max} = 0.952$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	210 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
2933 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of C1-C6 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2$ $N1 - H1 \cdots O3^{i}$ $N2 - H2A \cdots O1^{ii}$ $C2 - H2 \cdots O2^{i}$ $C14 - H14 - Ca^{1ii}$	0.86 0.86 0.93 0.93	2.46 2.14 2.07 2.58 2.80	2.7678 (17) 2.9247 (18) 2.8821 (16) 3.506 (2) 2.6692 (18)	102 152 157 175
C14—1114—Cg1	0.95	2.07	5.0055 (10)	142

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

MA gratefully acknowledges the Higher Education Commission (HEC), Islamabad, Pakistan, for providing him with a Scholarship under the Indigenous PhD Program and also for partial funding of this research work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2285).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Boryczka, S., Suwinska, K., Guillanton, G., Do Le, T. Q. & Elothmani, D. (1998). J. Chem. Crystallogr. 28, 555-560.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hohne, E. & Seidel, I. (1979). Krist. Tech. 14, 1097-1101.
- Pervez, H., Yaqub, M., Manzoor, N., Tahir, M. N. & Iqbal, M. S. (2009). Acta Cryst. E65, o2858.
- Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010a). Acta Cryst. E66, o1609.
- Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010b). Acta Cryst. E66, o1169-o1170.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zukerman-Schpector, J., Pinto, A. DaC., Da Silva, J. F. M. & Da Silva, R. B. (1994). Acta Cryst. C50, 87-88.

Acta Cryst. (2010). E66, o1729 [doi:10.1107/S1600536810023263]

N-{2-[N-(4-Methylphenyl)oxamoyl]phenyl}propanamide

H. Pervez, M. Ahmad, M. Yaqub, M. N. Tahir and N. Saira

Comment

We recently have reported the synthesis and crystal structures of certain isatin derivatives (Pervez *et al.*, 2009, 2010*a*, 2010*b*). The title compound (I), (Fig. 1) is the side product obtained in low yield due to the heterocyclic ring cleavage at position-2 of 1-propionylisatin when reacted with *p*-toluidine.

The crystal structures of (II) *i.e.* 2-oxo-*N*,2-diphenylacetamide (Boryczka *et al.*, 1998) and (III) *i.e. p*-tolyl-glyoxylic acid *p*-chloroanilide (Hohne & Seidel, 1979) have been published. The crystal structure of (I) differs from (II) and (III) due to substituants at the phenyl rings. The crystal structure of (IV) *i.e.* 2[']-(*N*-isopropyloxamoyl)acetanilide (Zukerman-Schpector *et al.*, 1994) has been published, which has isopropyl instead of tolyl and methyl instead of ethyl when compared to (I).

In the crystal structure of (I), the tolylamino group A (C1—C7/N1) and B(C9–C15/N2) of the cleaved part of 1-propionylisatin are planar with r. m. s. deviation of 0.0364 and 0.0456 Å, respectively. The dihedral angle between A/B is 80.25 (5) °. There exist an S(5) ring motif (Bernstein *et al.*, 1995) due to N—H···O interactions (Table 1). In the central part short intramolecular C=O···C=O contact replaces a hydrogen-bond plausible S(6). The central part of (I) has twisting flexibility to set the orientation of substituated phenyl rings. The intermolecular interactions of N—H···O and C—H···O types complete $R_2^2(12)$ and $R_2^2(18)$ ring motifs setting the two molecules in dimeric way. These dimers are interlinked through N—H···O interactions with $R_2^2(14)$ ring motif (Table 1, Fig. 2). The polymeric chain extends along the crystallographic *b* axis. The C—H··· π interaction (Table 1) also play role in stabilizing the molecules.

Experimental

To a refluxing solution of 1-propionylisatin (1.02 g, 5 mmol) in ethanol (15 ml) containing 2–3 drops of concentrated sulfuric acid was added the solution of *p*-toluidine (0.54 g, 5 mmol) made in ethanol (5 ml). The reaction mixture was then refluxed for 2 h, after which it was left at room temperature overnight. The reddish yellow solid formed was collected by suction filtration, washing of which with ethanol to get rid of the soluble impurities, however, gave a dirty white solid. Recrystallization of the same from ethanol furnished the title heterocyclic ring cleavage product (I) in pure form (0.33 g, 21%) m.p. 423 K. The single crystals of (I) for *x*-ray analysis were grown in ethyl acetate-petroleum ether (1:4) by diffusion method at room temperature.

Refinement

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms. 15

Figures

Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2. The partial packing (*PLATON*; Spek, 2009) which shows that molecules arranged *via* hydrogen bonds into one-dimensional polymeric chains extending along the *b* axis.

N-{2-[N-(4-Methylphenyl)oxamoyl]phenyl}propanamide

Crystal data

$C_{18}H_{18}N_2O_3$	Z = 2
$M_r = 310.34$	F(000) = 328
Triclinic, <i>P</i> T	$D_{\rm x} = 1.254 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.2048 (4) Å	Cell parameters from 2402 reflections
b = 9.7717(3) Å	$\theta = 2.8 - 25.3^{\circ}$
c = 10.4404 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 72.962 \ (2)^{\circ}$	T = 296 K
$\beta = 72.920 \ (1)^{\circ}$	Prism, yellow
$\gamma = 69.285 \ (2)^{\circ}$	$0.32\times0.24\times0.22~mm$
V = 820.63 (6) Å ³	

Data collection

Bruker Kappa APEXII CCD diffractometer	2933 independent reflections
Radiation source: fine-focus sealed tube	2402 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
Detector resolution: 8.2 pixels mm ⁻¹	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
ω scans	$h = -11 \rightarrow 10$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$k = -11 \rightarrow 11$
$T_{\min} = 0.942, T_{\max} = 0.952$	$l = -12 \rightarrow 12$
11476 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H-atom parameters constrained
<i>S</i> = 1.03	$w = 1/[\sigma^2(F_0^2) + (0.0538P)^2 + 0.1939P]$ where $P = (F_0^2 + 2F_c^2)/3$
2933 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
210 parameters	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.73296 (14)	0.26832 (11)	0.51591 (11)	0.0532 (4)
O2	0.60422 (14)	-0.02427 (11)	0.72653 (12)	0.0527 (4)
O3	0.36026 (15)	0.18977 (12)	0.55159 (12)	0.0572 (4)
N1	0.73440 (15)	0.06472 (13)	0.45212 (13)	0.0454 (4)
N2	0.36473 (15)	0.41064 (13)	0.57412 (12)	0.0434 (4)
C1	0.81861 (17)	0.09987 (16)	0.31438 (16)	0.0423 (5)
C2	0.7508 (2)	0.11442 (19)	0.20806 (17)	0.0533 (6)
C3	0.8280 (2)	0.1562 (2)	0.07434 (18)	0.0584 (6)
C4	0.9720 (2)	0.18504 (18)	0.04359 (18)	0.0541 (6)
C5	1.0394 (2)	0.1665 (2)	0.15214 (19)	0.0585 (6)
C6	0.96495 (19)	0.12374 (19)	0.28597 (18)	0.0533 (6)
C7	1.0503 (3)	0.2377 (3)	-0.1028 (2)	0.0789 (8)
C8	0.69138 (17)	0.15593 (15)	0.53889 (15)	0.0396 (5)
C9	0.58882 (17)	0.10771 (15)	0.67838 (15)	0.0404 (5)
C10	0.49283 (17)	0.22541 (16)	0.75877 (14)	0.0394 (4)
C11	0.5065 (2)	0.19194 (19)	0.89436 (16)	0.0503 (5)
C12	0.4344 (2)	0.2961 (2)	0.97574 (17)	0.0606 (6)
C13	0.3468 (2)	0.4365 (2)	0.92194 (18)	0.0619 (6)
C14	0.3263 (2)	0.47161 (18)	0.78955 (17)	0.0513 (5)

C15	0.39731 (17)	0.36707 (15)	0.70660 (14)	0.0390 (4)
C16	0.33857 (18)	0.32494 (17)	0.50734 (16)	0.0444 (5)
C17	0.2851 (3)	0.4048 (2)	0.3751 (2)	0.0701 (7)
C18	0.1504 (3)	0.3664 (3)	0.3605 (3)	0.0991 (10)
H1	0.71043	-0.01814	0.48038	0.0544*
H2	0.65336	0.09623	0.22615	0.0639*
H2A	0.36115	0.50119	0.53138	0.0521*
Н3	0.78158	0.16501	0.00316	0.0701*
Н5	1.13748	0.18326	0.13421	0.0702*
Н6	1.01320	0.11098	0.35712	0.0640*
H7A	1.16236	0.18772	-0.11688	0.1184*
H7B	1.03271	0.34386	-0.12098	0.1184*
H7C	1.00549	0.21520	-0.16359	0.1184*
H11	0.56593	0.09679	0.93107	0.0604*
H12	0.44498	0.27149	1.06627	0.0727*
H13	0.30103	0.50856	0.97527	0.0744*
H14	0.26406	0.56636	0.75514	0.0616*
H17A	0.25468	0.51191	0.36884	0.0841*
H17B	0.37380	0.38080	0.29937	0.0841*
H18A	0.06159	0.39040	0.43466	0.1487*
H18B	0.18084	0.26134	0.36232	0.1487*
H18C	0.12098	0.42260	0.27493	0.1487*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0656 (7)	0.0375 (6)	0.0605 (7)	-0.0269 (5)	-0.0023 (5)	-0.0126 (5)
02	0.0635 (7)	0.0321 (5)	0.0596 (7)	-0.0167 (5)	-0.0155 (5)	0.0002 (5)
03	0.0757 (8)	0.0411 (6)	0.0698 (8)	-0.0238 (5)	-0.0319 (6)	-0.0087 (5)
N1	0.0516 (8)	0.0360 (6)	0.0531 (8)	-0.0213 (6)	-0.0045 (6)	-0.0122 (5)
N2	0.0566 (8)	0.0321 (6)	0.0465 (7)	-0.0200 (5)	-0.0182 (6)	0.0002 (5)
C1	0.0417 (8)	0.0338 (7)	0.0522 (9)	-0.0120 (6)	-0.0048 (7)	-0.0143 (6)
C2	0.0465 (9)	0.0610 (10)	0.0617 (11)	-0.0255 (8)	-0.0069 (8)	-0.0191 (8)
C3	0.0581 (11)	0.0693 (11)	0.0555 (10)	-0.0246 (9)	-0.0114 (8)	-0.0176 (8)
C4	0.0508 (10)	0.0466 (9)	0.0596 (10)	-0.0144 (7)	-0.0001 (8)	-0.0152 (7)
C5	0.0408 (9)	0.0644 (11)	0.0714 (12)	-0.0227 (8)	-0.0031 (8)	-0.0159 (9)
C6	0.0442 (9)	0.0586 (10)	0.0622 (11)	-0.0185 (8)	-0.0124 (8)	-0.0147 (8)
C7	0.0777 (14)	0.0777 (14)	0.0698 (13)	-0.0306 (11)	0.0063 (11)	-0.0111 (10)
C8	0.0420 (8)	0.0293 (7)	0.0491 (9)	-0.0116 (6)	-0.0126 (7)	-0.0061 (6)
C9	0.0439 (8)	0.0325 (7)	0.0494 (9)	-0.0153 (6)	-0.0170 (7)	-0.0032 (6)
C10	0.0423 (8)	0.0368 (7)	0.0419 (8)	-0.0184 (6)	-0.0089 (6)	-0.0040 (6)
C11	0.0582 (10)	0.0475 (9)	0.0462 (9)	-0.0181 (7)	-0.0179 (8)	-0.0013 (7)
C12	0.0765 (12)	0.0680 (12)	0.0415 (9)	-0.0242 (10)	-0.0147 (8)	-0.0118 (8)
C13	0.0784 (13)	0.0568 (10)	0.0527 (10)	-0.0194 (9)	-0.0076 (9)	-0.0215 (8)
C14	0.0591 (10)	0.0386 (8)	0.0556 (10)	-0.0141 (7)	-0.0101 (8)	-0.0115 (7)
C15	0.0436 (8)	0.0345 (7)	0.0428 (8)	-0.0189 (6)	-0.0098 (6)	-0.0039 (6)
C16	0.0481 (9)	0.0417 (8)	0.0497 (9)	-0.0199 (7)	-0.0148 (7)	-0.0063 (7)
C17	0.0917 (14)	0.0686 (12)	0.0623 (12)	-0.0303 (11)	-0.0355 (11)	-0.0043 (9)

C18	0.1088 (19)	0.0778 (15)	0.133 (2)	-0.0164 (13)	-0.0782 (18)	-0.0158 (14)
Geometric parar	neters (Å, °)					
01		1 2244 (19)	C12—	-C13	1 371	(3)
02		1.2119 (18)	C12	-C14	1.376 (2)	
O3—C16		1.228 (2)	C14—	-C15	1.391 (2)	
N1—C1		1.425 (2)	C16—	-C17	1.501 (3)	
N1—C8		1.3359 (19)	C17—	-C18	1.475	5 (4)
N2-C15		1.4116 (19)	C2—1	H2	0.930	00
N2-C16		1.352 (2)	C3—1	Н3	0.930	00
N1—H1		0.8600	C5—1	H5	0.930	00
N2—H2A		0.8600	C6—]	H6	0.930	00
C1—C6		1.380 (3)	C7—1	H7A	0.960	00
C1—C2		1.376 (2)	C7—1	H7B	0.960	00
C2—C3		1.382 (2)	C7—]	H7C	0.960	00
C3—C4		1.379 (3)	C11–	-H11	0.930	00
C4—C7		1.508 (3)	C12-	-H12	0.930	00
C4—C5		1.384 (3)	C13-	-H13	0.930	00
C_{5}		1.376(3)	C14-	-H14	0.930	00
$C_8 - C_9$		1.529 (2)	C17=	-H1/A	0.970)0
C_{9} C_{10} C_{11}		1.490(2) 1 390(2)	C1/	-П1/D Н18А	0.970	0
C10-C15		1.390(2) 1.402(2)	C18-	-H18R	0.900	0
C11—C12		1.377 (2)	C18-	-H18C	0.960)0
O1…N2		3.1213 (19)	СЗ…н	113 ⁱ	3.000)0
01…C6		3.027 (2)	C6…F	114 ⁱ	3.010	00
O1…C15		3.138 (2)	C8…F	16	2.970)0
O1…N2 ⁱ		2.8821 (16)	C10	H7A ^{vi}	3.040	00
O2…N1		2.7678 (17)	C11	H11 ⁱⁱⁱ	3.050	00
O2…O3		3.0986 (18)	C11	H3 ^{vii}	2.970)0
O3…C8		2.914 (2)	C12	H3 ^{vii}	3.060)0
O3…N1 ⁱⁱ		2.9247 (18)	C15	H7A ^{vi}	3.100)0
O3…C10		2.930 (2)	H1…C	02	2.460	00
O3…C9		2.577 (2)	H1…C	D3 ⁱⁱ	2.140	00
O3…N1		3.178 (2)	H1…H	H18B ⁱⁱ	2.520	00
O3…O2		3.0986 (18)	Н2…С	D2 ⁱⁱ	2.580)0
O1…H6		2.8200	H2A…	··H14	2.430	00
$O1 \cdots H14^{i}$		2.8200	Н2А…	··H17A	2.160	00
O1…H17A ⁱ		2.8000	H2A.	··O1 ⁱ	2.070	00
O1…H2A ⁱ		2.0700	H2A.	··N2 ⁱ	2.770	00
O2…H12 ⁱⁱⁱ		2.8000	H2A··	··H2A ⁱ	2.440	00
O2…H1		2.4600	Н3…С	C11 ^{viii}	2.970	00
O2…H11		2.6100	Н3…С	C12 ^{viii}	3.060	00
O2···H2 ⁱⁱ		2.5800	НЗ…Н	17C	2.370	00

O2…H5 ^{iv} 2.8800 H5…H7A	2.5500
O2…H18B ⁱⁱ 2.6600 H5…O2 ^{iv}	2.8800
O3…H18B 2.7200 H6…O1	2.8200
O3…H1 ⁱⁱ 2.1400 H6…C8	2.9700
N1···O2 2.7678 (17) H6···H18B ^{ix}	2.5000
N1···O3 3.178 (2) H7A···C10 ^x	3.0400
N1···O3 ⁱⁱ 2.9247 (18) $H7A$ ···C15 ^x	3.1000
N2…O1 3.1213 (19) H7A…H5	2.5500
N2···C8 3.157 (2) H7B···H18C ^{xi}	2.5900
N2…O1 ⁱ 2.8821 (16) H7C…H3	2.3700
N2…N2 ⁱ 3.298 (2) H11…O2	2.6100
N2···H2A ⁱ 2.7700 H11···C11 ⁱⁱⁱ	3.0500
C3···C4 ^v 3.572 (3) H11···H11 ⁱⁱⁱ	2.4700
C3···C7 ^v 3.554 (3) H12···O2 ⁱⁱⁱ	2.8000
C4···C3 ^v 3.572 (3) H13···C3 ⁱ	3.0000
C6…O1 3.027 (2) H14…H2A	2.4300
$C7C3^{v}$ 3.554 (3) H14O1 ⁱ	2.8200
C8···C16 3.146 (2) H14···C1 ⁱ	2.9900
C8···N2 3.157 (2) H14···C6 ⁱ	3.0100
C8···O3 2.914 (2) H17A···H2A	2.1600
C9···C16 3.120 (2) H17A···O1 ⁱ	2.8000
C9···O3 2.577 (2) H18B···O3	2.7200
C10···O3 2.930 (2) H18B···H6 ^{xii}	2.5000
C15…O1 3.138 (2) H18B…O2 ⁱⁱ	2.6600
C16···C8 3.146 (2) H18B···H1 ⁱⁱ	2.5200
C16···C9 3.120 (2) H18C···H7B ^{xi}	2.5900
C1…H14 ⁱ 2.9900	
C1—N1—C8 122.33 (13) C16—C17—C18	113.78 (19)
C15—N2—C16 126.83 (13) C1—C2—H2	120.00
C8—N1—H1 119.00 C3—C2—H2	120.00
C1—N1—H1 119.00 C2—C3—H3	119.00
C16—N2—H2A 117.00 C4—C3—H3	119.00
C15—N2—H2A 117.00 C4—C5—H5	119.00
C2—C1—C6 119.50 (16) C6—C5—H5	119.00
N1—C1—C6 121.04 (15) C1—C6—H6	120.00
N1—C1—C2 119.43 (16) C5—C6—H6	120.00
C1—C2—C3 119.74 (18) C4—C7—H7A	109.00
C2—C3—C4 121.78 (18) C4—C7—H7B	109.00
C3—C4—C7 120.86 (19) C4—C7—H7C	109.00
С5—С4—С7 121.7 (2) Н7А—С7—Н7В	109.00
C3—C4—C5 117.39 (17) H7A—C7—H7C	110.00
C4—C5—C6 121.66 (19) H7B—C7—H7C	109.00
C1—C6—C5 119.89 (17) C10—C11—H11	119.00
	110.00

N1—C8—C9	115.40 (13)	C11—C12—H12	120.00
O1—C8—C9	119.66 (13)	C13—C12—H12	120.00
O2—C9—C8	119.57 (13)	C12—C13—H13	120.00
O2—C9—C10	122.47 (14)	C14—C13—H13	120.00
C8—C9—C10	117.22 (12)	C13—C14—H14	120.00
C11—C10—C15	118.54 (14)	C15—C14—H14	120.00
C9—C10—C11	116.22 (14)	C16—C17—H17A	109.00
C9—C10—C15	125.18 (13)	C16—C17—H17B	109.00
C10-C11-C12	121.67 (16)	C18—C17—H17A	109.00
C11—C12—C13	119.31 (16)	C18—C17—H17B	109.00
C12—C13—C14	120.45 (17)	H17A—C17—H17B	108.00
C13—C14—C15	120.80 (16)	C17—C18—H18A	109.00
N2-C15-C10	123.90 (13)	C17—C18—H18B	109.00
N2-C15-C14	116.97 (13)	C17—C18—H18C	109.00
C10-C15-C14	119.12 (14)	H18A—C18—H18B	109.00
O3—C16—C17	122.47 (16)	H18A—C18—H18C	109.00
N2-C16-C17	115.84 (14)	H18B—C18—H18C	109.00
O3—C16—N2	121.68 (15)		
C8—N1—C1—C2	-118.93 (18)	N1-C8-C9-C10	-159.46 (15)
C8—N1—C1—C6	59.2 (2)	O1—C8—C9—O2	-147.04 (17)
C1—N1—C8—O1	-8.3 (3)	C8—C9—C10—C15	47.4 (2)
C1—N1—C8—C9	174.65 (14)	O2-C9-C10-C11	40.4 (2)
C15—N2—C16—O3	-9.2 (3)	O2—C9—C10—C15	-142.61 (18)
C16—N2—C15—C10	38.2 (3)	C8—C9—C10—C11	-129.66 (17)
C16—N2—C15—C14	-140.31 (18)	C15-C10-C11-C12	-2.8 (3)
C15—N2—C16—C17	172.10 (17)	C9—C10—C15—N2	7.8 (3)
C2—C1—C6—C5	2.1 (3)	C9-C10-C15-C14	-173.71 (16)
N1—C1—C2—C3	176.60 (15)	C9—C10—C11—C12	174.46 (17)
C6—C1—C2—C3	-1.6 (3)	C11-C10-C15-N2	-175.24 (16)
N1—C1—C6—C5	-176.03 (15)	C11-C10-C15-C14	3.3 (3)
C1—C2—C3—C4	-0.4 (3)	C10-C11-C12-C13	0.0 (3)
C2—C3—C4—C7	-177.02 (19)	C11-C12-C13-C14	2.3 (3)
C2—C3—C4—C5	1.8 (3)	C12-C13-C14-C15	-1.8 (3)
C3—C4—C5—C6	-1.2 (3)	C13-C14-C15-N2	177.53 (17)
C7—C4—C5—C6	177.57 (19)	C13-C14-C15-C10	-1.1 (3)
C4—C5—C6—C1	-0.7 (3)	O3—C16—C17—C18	47.0 (3)
O1—C8—C9—C10	23.3 (2)	N2-C16-C17-C18	-134.27 (19)
N1—C8—C9—O2	30.2 (2)		

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*, -*z*+2; (iv) -*x*+2, -*y*, -*z*+1; (v) -*x*+2, -*y*, -*z*; (vi) *x*-1, *y*, *z*+1; (vii) *x*, *y*, *z*+1; (viii) *x*, *y*, *z*-1; (ix) *x*+1, *y*, *z*; (x) *x*+1, *y*, *z*-1; (xi) -*x*+1, -*y*+1, -*z*; (xii) *x*-1, *y*, *z*.

Hydrogen-bond geometry $(Å, \circ)$

Cg1 is the centroid of C1–C6 benzene ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O2	0.86	2.46	2.7678 (17)	102
N1—H1···O3 ⁱⁱ	0.86	2.14	2.9247 (18)	152
N2—H2A···O1 ⁱ	0.86	2.07	2.8821 (16)	157

C2—H2···O2 ⁱⁱ	0.93	2.58	3.506 (2)	175
C14—H14···Cg1 ⁱ	0.93	2.89	3.6693 (18)	142
Symmetry codes: (ii) $-x+1$, $-y$, $-z+1$; (i) $-x+1$, $-y+1$, $-z+1$.				

Fig. 1

